Material Specifications for the Drawn Arc and Capacitor Discharge Stud Welding Process

Because stud welding is used so prevalently throughout different industries, it shows its versatility in terms of applications and materials. Stud welding operations also have great flexibility when it comes to sizing, such as stud diameters and lengths. With stud welding, you can perform food-grade fastening systems, composite construction, large-scale thru-decking, and much more. If you are taking advantage of the wide range of the stud welding process for any project, big or small, you can find all the supplies you need with Northland Fastening Systems (NFS). We provide a complete supply of welding tools for rent or purchase, drawn arc, capacitor discharge (CD), and short cycle welding studs, welding accessories, and repair services for most models. Our own welding technicians are also available to provide support and advice from their own expertise and knowledge.

Stud Welding

For the majority of stud welding, steel is a mainstay material for drawn arc and CD operations, but there are many other materials that are critical parts of the stud welding process as well as materials that can improve and alter the properties of a weld.

Stud Welding Process

Let’s look at the material specifications for different components of the many steps that may be included in a full welding operation:

Studs and surfaces:

As mentioned, steel is a primary material for most stud welding scenarios. Low carbon steel and 302/304/305 stainless steel grades are common for drawn arc welding. However, for drawn arc operations, aluminum, other stainless steel grades, monel, and inconel can also be used for studs and surfaces. CD stud welding uses similar materials, including low carbon and stainless steel, but 1100, 6061, and 5000 aluminum alloys, brass, and other steels can also be used.

Plating:

For drawn arc welding, cadmium and zinc alloys can be used as plating. CD welding can use copper, cadmium, nickel, zinc, and many other plating metals. If nonweldable plating is already on a surface, that should be removed to prevent weld contamination.

Annealing:

Generally speaking, all low carbon and stainless steels can be annealed for both the stud and surface. Annealing can be done to a maximum of 75 Rockwell B for low carbon steel and 90 Rockwell B for stainless steel.

Ferrules:

An important nonmetal material used in stud welding comes in the form of a ceramic ferrule. Ceramic ferrules are a part of the drawn arc process. Ferrules are installed at the point of the weld around the stud tip to contain and control molten metal while the weld is performed. They can then be chipped off when the weld is cooled.

Summary

If you are looking for materials used in any part of the stud welding process, contact NFS at (651) 730-7770. You can also request a quote online to get started with us today.

The History of Catering and How Food Grade Welding Plays a Role in Catering Today

Welding has been a part of many metalworking industries for centuries, with the earliest forge welding dating back to the Bronze Age (3300-1200 BCE). Stud welding as one of many newer kinds of welding was developed in the early 20th century in the shipbuilding industry. Since its first advancements, stud welding has grown to be a part of almost every metal manufacturing industry from construction to food service. If you are working with stud welding operations, you can find all the supplies you need at Northland Fastening Systems (NFS). NFS is a comprehensive supplier of all stud welding equipment, tools, studs, and other accessories. We also provide repairs for tools and the advice of our own expert technicians. One application of stud welding that is sometimes overlooked is its use in food grade welding for restaurant, catering, and other commercial food service industries. Stud welding is a quick, clean operation that can create strong connections between stainless steel studs and other equipment components. Not only is stud welding effective for well-made equipment, it’s also sanitary. Equipment made with stud welding operations meets strict standards for food safety and hygiene.

Food Grade Welding

From commercial kitchens to residential appliances, food grade welding is a heavily relied-on operation that allows manufacturers to quickly build components and full assemblies that won’t have potential issues with hygiene. Food grade stud welding prevents harborage, creates strong connections, and uses stainless steel that won’t corrode or allow spaces for bacteria and other pathogens to grow.

A large part of the food service industry that utilizes equipment manufactured with stud welding is catering. Many kinds of equipment used in the catering industry are fabricated with CD stud welding, thanks to the strong, clean connections points it offers.

Catering Chronology

Catering in the world dates back to 4000 BCE in China, but catering in the United States has a much shorter history. Let’s look at a brief timeline based on an article on Medium.com website, “A Brief History of Catering.”

  • 1778: One of the first large catered events was held in Philadelphia at a ball. The event was catered by Caesar Cranshell.
  • 1820: By this time, catering was a respectable business that was largely operated by African Americans in the free northern United States.
  • 1840: Robert Bogle, the “Originator of Catering,” expanded and diversified the catering industry.
  • 1930-1960: The catering industry survived through World War I and World War II rationing by simplifying menus and partnering with restaurants.
  • 1970-2000: During this time, as more and more women started working in the food service industry, new styles of cooking passed down in different communities became a part of catering menus.
  • 2000-present: Catering is a dedicated department for many restaurants today. Catering has also changed to adapt to new concerns and rules after the COVID-19 pandemic. Current restrictions for sanitation and preventing pathogen transmission make it more important than ever for catering equipment to be hygienic.

To learn more about how catering equipment is made today with CD food grade welding and our supplies, contact NFS at (651) 730-7770 or request a quote online.

Inspection and Testing of Thru-Deck Welding with NFS Fastening Systems

Thru-deck stud welding is an important operation for the construction industry and is utilized in a wide range of composite building processes, including attaching metal deck sheeting to steel beams. Decking and steel beams have widespread use in the construction of many kinds of buildings, infrastructure, and other large structures. Because thru-deck welding is such a critical part of many fabrication projects, it’s important for welds to be performed correctly, and for testing and inspections to follow international standards for quality. If you’re working with thru-deck welding processes, we can help. Northland Fastening Systems (NFS) supplies a comprehensive range of tools for rent or purchase, studs, accessories, repairs for most welding models, and the guidance and knowledge of our own skilled technicians.

Thru-Deck Welding

With thru-deck welding, you’re likely operating on an active job site, which means safety is key. Check your cables, equipment, and power source for safety and to ensure you’re receiving enough power through extended cords; make sure your welding surfaces are grounded to a clean spot on a beam; and check your welding surface for dirt, water, and other contaminants.

Once you’ve made sure your conditions are appropriate for thru-deck weld fastening systems and you’ve performed your weld, you should also test and inspect the weld results before continuing on to complete a series of welds.

Testing

Ideally, you will perform tests on pre-production and production weld results. All testing should follow the American Welding Society Structural Welding Code D1.1. This means accounting for the material and design, fabrication, qualification, and inspection. Many details need to be taken into account with your testing, including not performing a test in cold weather unless the stud has cooled to be warm to the touch. If a stud is hot or cooled completely in temperatures below freezing, it will compromise the results. Learn more about AWS testing standards and more about basic testing of stud welds.

Visual Inspections

Visual inspections are just as important as following the AWS code for thru-deck welding specifications. In your visual inspection, you should be able to see the weld point completely around the stud. Any undercuts, spattering, or other abnormalities at the weld point is a sign of a poor weld. If you can’t see 360 degrees around the weld, you may need to use destructive testing methods. This can be done with a hammer hit or by bending the stud to a 15-degree angle. In most cases, bending will be a more effective test. If the weld fails with either test, you need to recalibrate your conditions and test and inspect a new result.

Thru-deck welding is one of many useful stud weld fastening systems for the construction industry. For more information about our supplies for thru-deck and other welding operations, contact NFS at (651) 730-7770 or request a quote online

Tallest Buildings in the World Made Possible with the Stud Welding Process

Stud welding is a versatile manufacturing operation that can be utilized for a broad range of fastening systems. Because of the many uses of stud welding, various stud weld operations are used throughout industries. From automotive to medical industries, many manufacturers rely on stud welding for safe, long-lasting connections. Another important function stud welding provides is in composite construction for infrastructure and large-scale building. If you are using the stud welding process for any kind of composite construction or other structural building, Northland Fastening Systems (NFS) has the supplies, tools, and technical support you need. We provide a comprehensive selection of drawn arc and capacitor discharge (CD) studs, welding tools for rent or purchase, welding accessories, and repair services for a range of welding models.

Stud welding process using composite construction:

Composite construction is a key part of building with materials like concrete and steel, both of which are significant factors of road and bridge infrastructure, multistory buildings, and other large-scale constructions. In fact, without the stud welding process, some of the world’s tallest buildings today wouldn’t be possible.

Tallest buildings made with the stud welding process:

Burj Khalifa:

Built in 2010 in Dubai, the Burj Khalifa still holds the title of tallest in the world. It reaches 2,717 feet with 163 floors and one additional floor below ground. The Burj Khalifa is built in a neo-futuristic style and relies on a structural skeleton of reinforced concrete, steel, and aluminum.

Merdeka 118:

One of the newest of the world’s tall buildings, the Merdeka 118 was completed in 2022 in the capital city of Malaysia. The Merdeka (meaning “independence” in Indonesian) Tower is a combination of neo-futuristic style and a Malay traditional songket pattern. The tower stands 2,227 feet with 118 floors and five others below ground.

Shanghai Tower:

Until the construction of the Merdeka 118 tower, the Shanghai Tower held the title of second tallest. It was built in Shanghai in 2015 and stands 2,073 feet tall. It has 128 floors, with five additional floors below ground.

Abraj Al-Bait Clock Tower:

Constructed in 2012 in Mecca, Saudi Arabia, the Abraj Al-Bait Clock Tower stands 1,972 feet tall. It has 120 floors, with three others below ground. The tower is built in a postmodern, neo-classical style, featuring an ornate (and enormous) atomic clock and golden spire.

Ping An International Finance Center:

The Ping An tower was constructed in 2017 in Shenzhen, China. It stands 1,966 feet (to its tip) and has 115 floors, with five additional below ground. It currently has the world’s highest observation deck at 1,844 feet.

Composite construction using stud welding process:

These are just some of the hundreds of super tall buildings in the world built with composite construction using steel and concrete. The stud welding process makes it possible to form powerful connections and shear force absorbers with those materials to construct taller and taller buildings.

To learn more about our stud welding supplies, contact NFS at (651) 730-7770 or request a quote online.

 

Sheet Metal Fabrication for Construction Welding with Studs

Metal working and, in particular, constructing tools and equipment with metals is a practice dating back to the Bronze and Iron Ages. The Bronze Age began in about 3300 BCE and led into the Iron Age around 1200 BCE. Over thousands of years, our understanding of metals and the application of different metal objects expanded greatly. Even in the last 50 years, scientific research and development of high-performance metal alloys has advanced significantly, including improvements to sheet metal. Today, many industries are reliant on sheet metal for the fabrication of countless tools and equipment. Some of our largest global industries completely rely on the production of high-quality, specialized sheet metals for manufacturing. For example, the automotive, aerospace, railroad, oil, electronics, food, medical, computer, military, agricultural, and construction industries would be unable to operate without access to sheet metals. Within the majority of those industries, construction welding is used to apply studs and build with sheet metals for strong, clean fastening systems. At Northland Fastening Systems (NFS), one of the main industries we supply with studs, tools, accessories, and other equipment is the sheet metal welding industry.

Studs Attached With Construction Welding

Structural steel building with sheet metals includes several steps on the production line, including cutting, bending, assembling, and more. Stud welding fasteners are an important part of the fabrication process. Studs attached with construction welding have a strong bond to sheet metal surfaces; they offer a clean, mark-free finish, and they are an affordable, efficient fastener option.

Grades of Sheet Metal

Stud welding can be used in all kinds of applications with any grade of sheet metal. While there are many kinds of sheet metals available today three main categories of all sheeting still remain: commercial, industrial, and structural.

  1. Commercial metal sheeting is used to build a wide range of products marketed to individual consumers and businesses. Common examples of products made with commercial metal sheeting include appliances, electronics, and cars. Commercial metal sheeting is so prevalent across industries that almost every household and business will use a product made with stud welding sheeting daily.
  2. Industrial metal sheeting is used to manufacture parts that can be integrated into other products down the line. Manufacturers are the main purchasers of industrial sheeting, and they typically use that material to make parts for tools like bandsaws, drill presses, hydraulic systems, and more.
  3. Structural steel sheeting is used in the construction welding industry. Sheeting installed in buildings and infrastructure like skyscrapers, bridges, water towers, shops, factories, and even homes are all structural metals. Stud welding is used throughout many construction welding processes.

For more information on our supplies and how we support sheet metal fabrication industries, contact NFS at (651) 730-7770 or request a quote online.

The Great Range of Stud Welding Process Applications

Stud welding is one of the most valuable operations as a fastening system for the manufacturing and industrial world. Various types of stud welding have hundreds of applications, from large-scale infrastructure to tiny insulation pins. The stud welding process is versatile, quick, and when performed correctly, provides a powerful connection point with greater benefits than other fastening systems. Stud welding operations began in the early 1900s in the shipbuilding industry, but since then, have spread to many other applications and sectors of industry. No matter what you’re utilizing stud welding for, Northland Fastening Systems (NFS) can help you get the job done with our comprehensive selection of tools, studs, and other supplies. We provide tools for rent or purchase, studs in a broad range of dimensions with custom options available, stud welding accessories, repairs of most tool models, and the expert support of our own welding technicians.

Stud Welding Process

The three types of stud welding—drawn arc, capacitor discharge (CD), and short cycle— each has its own range of applications throughout different industries. Drawn arc welding is typically used in “heavy duty” applications like shear connectors in composite construction and headed anchor studs in concrete embedments. CD and short cycle welding are often used for rapid, lightweight connection points with smaller diameter studs and pins, such as the installment of insulation.

Three Types of the Stud Welding Process

All three types of stud welding have important uses that fall into the great range of stud welding applications, including the following.

Construction:

Composite construction with concrete and steel, beams, sewage and plumbing system pipes, roads, bridges, and many other applications use stud welding as a fastening system. Strength, flexibility, and other properties of studs make these construction techniques possible.

Automotive:

Stud welding is highly prevalent throughout the automotive industry. Cars, trucks, and other vehicles rely on the precision and strength of welding studs for fastening sheet metals, exhaust systems, heat shields, insulation, power steering, electrical wiring, and more.

Food:

In the restaurant, catering, food processing, packaging, and even home kitchen appliance industries, stud welding is a critical tool for building food-safe equipment. Hygiene and sanitation are the most important features of food production equipment, and stud welding allows systems to be built with the least risk of contamination.

Shipbuilding:

Stud welding is still important in its root industry. Stud application was largely relied on for building naval and freight ships during wartime throughout the 20th century, but today stud welding is used on all kinds of vessels, from battleships and submarines to small motor boats and yachts.

There are many other industries that utilize stud welding operations. Manufacturers fabricating heating, ventilation, and air conditioning (HVAC) systems; furniture; agricultural equipment; electronics; signs; and even decorative items all use various forms of stud welding.

To learn more about the stud welding process and our supplies, contact NFS at (651) 730-7770 or request a quote online.

 

 

Using Construction Welding to Retrofit Older Buildings for Sustainability

As the construction industry starts to implement more environmentally friendly, sustainable systems with longer lasting, high-quality materials, all new buildings are becoming some of the greenest we’ve ever seen. Even large industrial complexes and city centers are built with low-impact carbon emissions and sustainable energy in mind. While these new constructions are better than ever in terms of how they affect the earth, there are still many older buildings in use that could be improved with more sustainable retrofits and modernization. Around 50% of commercial buildings in the United States alone were built more than 50 years ago. There are many ways these older buildings can be improved for a lower carbon footprint by adjusting the existing structure without necessarily changing the historical significance. At Northland Fastening Systems (NFS), we know that stud welding and construction welding, in general, can be a large part of that retrofitting process.

Composite Construction Welding

There are many steps in the building process that rely on stud welding operations for quality construction. Stud welding is used in composite construction for attaching beams, girders, and other skeleton components to other important materials like concrete. It’s also used to fasten insulation sheeting to enclosed walls, build scaffolding needed in the construction process, create protected electrical systems, and more.

Construction Welding

The process of modernizing older buildings for sustainability with the use of construction welding takes several steps. Some of the most important steps include updating the following building components:

Electrical:

How a building generates electricity can affect how much energy is utilized on a daily basis. Retrofitting an electrical system can seriously change how energy is spent. Better power blueprints, longer lasting lighting, energy storage, and more can improve building sustainability. Electrical enclosures in buildings are almost exclusively built with capacity discharge (CD) stud welding operations.

Insultation:

CD stud welding is also used to install insulation pins quickly and effectively. Most older buildings have poorly installed, outdated insulation that doesn’t hold up to modern building conditioning. With the installation of better insulation sheeting throughout an older building, energy spent on maintaining well-conditioned indoor temperatures will drop almost immediately.

Heating, ventilation, and air conditioning (HVAC):

Another part of conditioning an older building that could be updated for better sustainability is the HVAC system, which can be a huge energy cost, especially for larger buildings that are not well designed or insulated with eco-conscious goals. If older buildings receive better HVAC systems (often installed with stud welding) with new motors, cooling agents, boilers, and filters, then emissions are greatly reduced in that area and the air quality will also likely improve.

Other adjustments can be made to the building’s main structure, roof, and even foundation for better sustainability, but the three areas discussed are the quickest and least invasive retrofit options for old buildings. To learn more about how stud welding and construction welding is involved in this process, contact NFS at (651) 730-7770 or request a quote online.

More About the Short Cycle Stud Welding Process

Within the stud welding world, technicians can utilize several different types of operations, depending on materials and other specifications. While stud welding is one of the older branches of electrical welding, dating back as far as the early 1900s in the shipbuilding industry, the operations and technology have developed greatly beyond their original purposes. Today, welders can use drawn arc, capacitor discharge (CD), and short-cycle welding for anything from composite construction to electrical enclosures. The supplies required for stud welding can be equally wide-ranging in dimensions, materials, and function. No matter what kind of stud welding process you’re using or how big or small your project, Northland Fastening Systems (NFS) provides a comprehensive range of tools for rent or purchase, studs, welding accessories, repairs, and technical guidance.

Stud Welding Process

The short-cycle stud welding process can sometimes be considered a combination of drawn arc operations and CD studs. While this is partially true, short-cycle welding as a complete operation is much more complex and multifaceted than simply that.

Short-cycle Operation

The welding sequence of a short-cycle operation follows the same pattern as drawn arc welding, but it uses higher currents and shorter welding times (about 10-100 milliseconds). Overall, short-cycle welding is also best suited for installing studs with no greater than ½″ diameters on thin metal sheets. Most welding technicians will use shielding gas to improve the weld result of a short cycle process.

Useful for Installing Studs

Compared to drawn arc or CD operations, short-cycle welding is useful for installing studs that are not in a vertical position. Due to the quick weld time, molten metal at the weld point doesn’t have time for gravity to create drips and runs. With the fast weld, technicians don’t need to use ceramic ferrules, and in controlled environments they may even be able to eliminate shielding gas requirements.

Dimensions best suited to a short-cycle weld operation range from 1.7mm to 2mm for welding surfaces and thinnest CD studs to ½″ drawn arc studs. Three phase power supplies of 415 volts are recommended. Keep in mind how extension cables may affect your power.

Short-cycle welding can have risks of porous connection points if not performed correctly and with the right stud dimensions and welding surface materials. When done correctly, short-cycle stud welding has lower equipment costs, can be done with greater tolerances, and can even be worked into automated systems. For the right application, short-cycle welding is a convenient process that requires fewer accessories and additional tools than CD or drawn arc operations.

To learn more about the benefits of any stud welding process or for our supplies, contact NFS at (651) 730-7770. You can also request a quote online to get started with us today.

Automated Fastening Systems Entering the Fourth Industrial Revolution

Industries are always changing as new technology develops and becomes commonplace. As new equipment and practices come into any industry, regulations and standards come with them, and manufacturers adapt to meet these requirements. In the stud welding industry, we use very different models and systems today than the formats that were used in the early 1900s for shipbuilding. The first stud welding operations were essentially manual stick welding or resistance welding, used for composite construction on navy vessels and other large ships. Today, stud welders have several operations at their disposal, including drawn arc, capacitor discharge (CD), and short cycle fastening systems. No matter what kind of modern stud welding you use, you can find the supplies, repairs, and advice you need at Northland Fastening Systems. NFS provides a complete range of supplies, from tools to accessories and everything in between.

Global Industrial World

The global industrial world has gone through several significant changes in the form of three major eras. The most significant early changes began with the First Industrial Revolution, from the late 1700s to the mid-1800s. This marked the change from handmade products to fabrication with steam and water-powered machines.

Second Industrial Revolution

The Second Industrial Revolution spanned the turn of the century, from around 1870 to 1915. This marked a time of economic growth, the development of larger railroad systems, and the modern production line.

Third Industrial Revolution

The Third Industrial Revolution began towards the end of the 1900s as digital technology, computers, and the internet changed the manufacturing landscape. This revolution led to today’s current status as the time of the Fourth Industrial Revolution, or Industry 4.0.

What is Industry 4.0?

The foundation of Industry 4.0 is the increased use of artificial intelligence, smart automation, data sharing, and interconnectivity. The internet and cloud systems allow for direct, in-depth data sharing between every production stage, engineers, customers, and third parties. This creates an immersive manufacturing environment that borders on augmented reality, guided through extensive technical assistance. Industry 4.0 gives all levels of manufacturing greater intelligence, the ability to make decentralized decisions, and data transparency.

What does automated stud welding mean for the industry?

Although Industry 4.0 has been slower to affect the stud welding industry and fastening systems in general, there are still new technologies, operations, and capabilities entering the field. Automation has been growing rapidly, material sourcing is improving constantly, and production speeds are at an all-time high. Innovative applications of stud welding are also growing, especially in the fields of design and infrastructure. Most importantly, safety standards, sustainable policies, and economic responsibility have shifted the paradigm of the industrial world, including for stud welding. Industry 4.0 is moving stud welding towards better data, less waste, and smarter tools.

To learn more about the high-quality fastening systems supplies we provide, contact Northland Fastening Systems at (651) 730-7770 or request a quote online today.

Tips for Thru-Deck Structural Steel Welding

Stud welding is used extensively throughout the construction industry for residential and commercial buildings, industrial facilities, infrastructure, and more. The widespread use of stud welding in construction is largely due to the powerful fastening and composite building capabilities that different operations provide. With shear connectors, builders can secure concrete onto steel beams; bar anchors allow connections between bearing plates and concrete; and many other studs are key in structural steel welding processes. If you’re using stud welding operations in your construction projects, Northland Fastening Systems (NFS) has the tools, supplies, and expertise you need. We provide a complete selection of drawn arc and CD welding studs, welding tools for rent or purchase, welding accessories, and the advice of our own welding technicians. We also provide repairs and services for many standard stud welding tool models.

Structural Steel Welding

Within the structural steel welding industry, one of the most valuable operations is thru-deck welding. Thru-deck welding allows builders to attach various sizes, thicknesses, and materials of steel decking to beams and other building components. Decking materials are used in several kinds of building construction for its strength, flexibility, and cost-effectiveness.

Thru-Deck Studs

When welding thru-deck studs, the following steps should be taken into account.

  • Make sure you are using the right tools for the job, including thru-deck studs, a drawn arc welding unit calibrated correctly, the best power supply suited to the task, and thru-deck welding ferrules. Thru-deck welding ferrules have wider gaps between teeth than other ferrules. These gaps allow more oxygen to reach the weld, creating better stud penetration through the deck to the underlying beam.
  • Attach the decking as securely to the beam as possible and use grounding correctly. Grounding can be done with a welding ground C-clamp attached in a spot on the beam that has been ground down to bare metal.
  • Check your power source(s). Thru-deck welding sites can be larger than others. This means you often need power extensions to reach far away welds. This can be done successfully, but keep in mind how cable length and wire size can impact power supply.
  • Clean and dry the decking. For accurate thru-deck welding, sweep away dust and debris before each weld. If there are unavoidable wet conditions, the weld point should be dried with a blower or heat gun to remove moisture from in between the beam and the deck.
  • Monitor temperatures. Thru-deck welding temperatures should be above 0ºF according to the American Welding Society (AWS) “Ambient and Base-Metal Temperature Requirements.”

Standardized Procceure

Thru-deck welding is a highly standardized procedure used today on many construction sites. However standardized, it still is a technical process that requires a deep understanding and well-manicured conditions.

To learn more about thru-deck structural steel welding, contact NFS at (651) 730-7770. You can also request a quote online to get started with us today.